Package: glmnetSE 0.0.1

Sebastian Bahr

glmnetSE: Add Nonparametric Bootstrap SE to 'glmnet' for Selected Coefficients (No Shrinkage)

Builds a LASSO, Ridge, or Elastic Net model with 'glmnet' or 'cv.glmnet' with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.

Authors:Sebastian Bahr [cre, aut]

glmnetSE_0.0.1.tar.gz
glmnetSE_0.0.1.zip(r-4.5)glmnetSE_0.0.1.zip(r-4.4)glmnetSE_0.0.1.zip(r-4.3)
glmnetSE_0.0.1.tgz(r-4.4-any)glmnetSE_0.0.1.tgz(r-4.3-any)
glmnetSE_0.0.1.tar.gz(r-4.5-noble)glmnetSE_0.0.1.tar.gz(r-4.4-noble)
glmnetSE_0.0.1.tgz(r-4.4-emscripten)glmnetSE_0.0.1.tgz(r-4.3-emscripten)
glmnetSE.pdf |glmnetSE.html
glmnetSE/json (API)
NEWS

# Install 'glmnetSE' in R:
install.packages('glmnetSE', repos = c('https://sebastianbahr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sebastianbahr/glmnetse/issues

On CRAN:

3.00 score 2 stars 10 scripts 151 downloads 1 exports 11 dependencies

Last updated 3 years agofrom:dfa699d9d3. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winNOTEOct 26 2024
R-4.5-linuxNOTEOct 26 2024
R-4.4-winNOTEOct 26 2024
R-4.4-macNOTEOct 26 2024
R-4.3-winNOTEOct 26 2024
R-4.3-macNOTEOct 26 2024

Exports:glmnetSE

Dependencies:bootcodetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival